Abstract Submitted to the International Conference on Strongly Correlated Electron Systems University of Michigan, Ann Arbor August 6-10, 2001 ## Fermi surface and superconducting gap of 2H-NbSe $_2$ using low-temperature ultrahigh-resolution angle-resolved photoemission spectroscopy Takayuki Kiss¹, Takayoshi Yokoya¹, Ashish Chainani^{1,2}, Shik Shin^{1,3}, Minoru Nohara⁴, Hidenori Takagi⁴ - ¹ Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan - ² Institute for Plasma Research, Bhat, Gandhinagar-382 428, India - ³ The Institute of Physical and Chemical Research (RIKEN), Sayo-gun, Hyogo 679-5143, Japan - Department of Advanced Materials Science, University of Tokyo, Tokyo 113-0033, Japan 2H-NbSe $_2$ exhibits an incommensurate CDW ($T_{CDW} \sim 35K$) and a superconducting transition at T_c =7.2K. Fermi surface was mapped out and the CDW nesting vector was reported to correspond to the hexagonal Fermi surface nesting vector*. We have studied the Fermi surface (FS) and superconducting gap of 2H-NbSe $_2$, using angle-resolved photoemission spectroscopy set to an energy resolution of 2meV and an angle resolution of ± 0.13 deg. We clearly resolved all FS sheets predicted from band calculations and found that the observed hexagonal Fermi surface nesting vector centered at Γ point is larger than the CDW nesting vector reported from neutron diffraction. Furthermore, a superconducting gap was successfully observed for 2H-NbSe $_2$. ^{*}T. Straub, T. Finteis, R. Claessen et al., Phys. Rev. Lett. 82 (1999) 4504.